The complete pathway for ERK2-catalyzed reaction. Evidence for an iso random Bi Bi mechanism.

نویسندگان

  • Zhi-Xin Wang
  • Jia-Wei Wu
چکیده

In the present study, the enzymatic mechanism of ERK2 is re-examined by a combination of steady-state kinetic studies in the absence and presence of viscosogenic agents. Kinetic studies carried out in various concentrations of sucrose revealed that both k(cat) and k(cat)/K(m) for either ATP or EtsDelta138 were highly sensitive to solvent viscosity, suggesting that the rapid equilibrium assumption is not valid for the phosphorylation of protein substrate by ERK2. Furthermore, the kinetic analysis with the minimal random Bi Bi reaction mechanism is shown to be inconsistent with the principle of the detailed balance. This inconsistent calculation strongly suggests that there is isomerization of the enzyme-substrate ternary complex. The viscosity-dependent steady-state kinetic data are combined to establish a kinetic mechanism for the ERK2-catalyzed reaction that predicts initial reaction velocities under varying concentrations of ATP and substrate. These results complement previous structure-function studies of mitogen-activated protein kinases and provide important insight for mechanistic interpretation of the kinase functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CATALYTIC REFORMING OF n-HEPTANE ON PLATINUM-TUNGSTEN SUPPORTED ON GAMMA-ALUMINA

The mono-metallic and bi-metallic catalysts have been prepared by impregnating with solutions containing a compound of H2PtCl6,WO3 and 1ml HCl (0.1 mol). It should be noted that the catalysts’ activity and selectivity have been determined under these conditions : 450-5000C ,and 15-25atm by H2. For converting n-heptane , the molar ratio H2/C7H16 is 5 , and LHSV is 1.5ml/h. It has been proved tha...

متن کامل

A simple and green approach for the synthesis of substituted dihydro-2-oxypyrroles catalyzed by nano-Fe3O4@SiO2/SnCl4 superparamagnetic nanoparticles

In this work, an efficient and green procedure for the synthesis of dihydro-2-oxypyrroles has been developed. One-pot four-component condensation reaction of aniline derivatives (2 mmol), dialkyl acetylene dicarboxylate (1 mmol), and aldehydes ( 1 mmol) was done in ethanol at 65 °C in the presence of nano-Fe3O4@SiO2/SnCl4 as a magnetically reusable he...

متن کامل

SbCl5.SiO2: an reusable lewis acid for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones)

Nano-SbCl5.SiO2 and SbCl5.SiO2 are bench-top catalysts which are reusable, readily available, versatile andefficient for promotion of many acid catalyzed organic reactions. These catalysts do not need specialprecautions for preparation, handling or storage, and they can be stored at an ambient temperature for monthswithout losing their catalytic activity. 4-dihydropyrimidin-2(1H)-ones(thiones) ...

متن کامل

Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...

متن کامل

Kinetic Study of Ethyl Hexanoate Synthesis Using Surface Coated Lipase from Candida Rugosa

Kinetics of lipase-catalyzed esterification of hexanoic acid and ethyl alcohol using the solvent-free system, surface coated lipase from Candida rugosa, had been studied. The effect of various parameters such as reaction time, reaction temperature, reaction kinetics, water removal and feasibility of solvent-free system had been focused. Candida Rugosa lipase was more effective than other li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 38  شماره 

صفحات  -

تاریخ انتشار 2007